From Hilbert Space to Dilbert Space


Previous Entry Share Next Entry
Solar Flares and Radioactive Elements
saturn
gmcdavid
From Stanford University News and Symmetry Magazine (The latter has a small but significant correction—See the 1st comment and the response)

It's a mystery that presented itself unexpectedly: The radioactive decay of some elements sitting quietly in laboratories on Earth seemed to be influenced by activities inside the sun,93 million miles away.
The article mentioned the decays of Silicon-32 and Radium-226, as reported in Evidence for Correlations Between Nuclear Decay Rates and Earth-Sun Distance back in 2008. Similarly, Perturbation of Nuclear Decay Rates During the Solar Flare of 13 December 2006 suggested a solar dependence on the decay of Manganese-54. The suggestion that radioactive decay rates might in some way depend on the sun is quite extraordinary, and has prompted the reanalysis of a lot of data. Other scientists, in Evidence against correlations between nuclear decay rates and Earth-Sun distance looked at the decay of 6 other radioisotopes without seeing any such dependence. There is no obvious dependence on atomic weight or other reason why some nuclear decays should show a dependence on the solar distance and others should not.

There are different types of radioactive decay. Radium-226 decays by emitting an α particle (a Helium nucleus: 2 protons and 2 neutrons) while Silicon-32 is a case of β decay (emission of an electron). Manganese-54 decays by electron capture, which is essentially time-reversed β decay. α-decay is a manifestation of the of the strong nuclear force, while β-decay is a weak interaction. If the solar effect is real, then affects two different fundamental forces of nature.

John G. Cramer, in Radioactive Decay and the Earth-Sun Distance suggested that

...the Earth's orbit has a very small eccentricity, so the annual variations in R [the Earth-Sun distance] are small. A better way of testing whether radioactive decay rates depend directly on 1/R2 would be to monitor a radioactive decay
process within a space vehicle in a long elliptic orbit with a large eccentricity, so that R has a very large variation. As it happens, NASA has a number of space probes that match this description, because many space probes, particularly those that venture into the outer reaches of the Solar System, are powered by radioisotope-driven thermoelectric power sources containing a strong radioactive decay source that produces enough energy as heat to power the vehicle. The power levels of such thermoelectric generators are carefully monitored because they constitute the principal power source of the vehicle.

This has been done. According to Peter Cooper, in Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft

Data from the power output of the radioisotope thermoelectric generators aboard the Cassini spacecraft are used to test the conjecture that small deviations observed in terrestrial measurements of the exponential radioactive decay law are correlated with the Earth-Sun distance. No significant deviations from exponential decay are observed over a range of 0.7 - 1.6 A.U. A 90% Cl upper limit of 0.84 x 10-4 is set on a term in the decay rate of Pu-238 proportional to 1/R2 and 0.99 x 10-4 for a term proportional to 1/R.
Less technically:

Deep-space probes usually generate power from the heat emitted by a chunk of radioactive material plutonium-238 for the Cassini spacecraft. Cassini journeyed as close to the sun as Venus and then far back to Saturn, spanning a much wider range of distances from the sun than Earth does during its yearly orbit. If the sun had an effect on plutonium decay, the fluctuations would have been much more substantial than those seen in Earth-bound experiments. As a result, Cooper reasoned, Cassini should have measured substantial changes in its generator's output. It didn't.

The Stanford/Symmetry article included something new. Peter Sturrock, Professor Emeritus of Applied Physics at Stanford, has suggested is that some of the variation in the Radium-226 and Silicon-32 decay rates is related to solar rotation. From Evidence for Solar Influences on Nuclear Decay Rates:

Recent reports of periodic fluctuations in nuclear decay data of certain isotopes have led to the suggestion that nuclear decay rates are being influenced by the Sun, perhaps via neutrinos. Here we present evidence for the existence of an additional periodicity that appears to be related to the Rieger periodicity well known in solar physics.

What's next? More measurements and analysis of data. Can the anomalous results on Silicon-32 and Radium-226 be replicated? As 80beats noted

Many of the tiny variations that the study authors saw in radioactive decay rates came from labs like Brookhaven National Lab—the researchers didn’t take the readings themselves. And, Sullivan says, some are multiple decades old. In their paper, Fischbach’s team takes care to try to rule out variations in the equipment or environmental conditions that could have caused the weird changes they saw in decay rates. But [...] “they’re people 30 years later [studying] equipment they weren’t running. I don’t think they rule it out.”

Links to the research reports can be found at Variability of Nuclear Decay rates. Search for "Research papers: PERIODIC VARIATIONS: SCALE OF DAYS OR YEARS" and "Research papers: NON-PERIODIC VARIATIONS:" Subheading "Of Cosmic Origin". Thanks to arXiv.org information about current research in physics is easily accessible to anybody with an internet connection.

Peter Sturrock was my first course advisor when I was a graduate student in his department at Stanford, 1972-1975. At one point there I wanted to take a course in mathematical statistics. I was a little hesitant about this, since the subject is somewhat off the main direction of graduate study in physics. To my surprise, Professor Sturrock strongly encouraged me to do so. Whatever the conclusion about the relationship between the sun and radioactive decay may be, there will be a lot of statistical analysis along the way.

?

Log in

No account? Create an account